
An Arduino based antenna switch controller

I have been frustrated with the lack of antenna outputs on my Icom IC-7300 for a while. I have a relay

based antenna switch but it needed to be manually controlled and I wanted to automatically select

an antenna depending on the band in use. Ideally changing the antenna configuration should not

require re-programming. I also needed a band select for a linear amplifier, which is essentially the

same function when you take away the relays. I built a 6-relay design with an Arduino connecting to

the IC-7300 CI-V bus, which provides data on the frequency which can in turn be used to select

antennas using inexpensive multi-pole relays which occasionally appear surplus at good prices.

Multi-way Antenna switches

HF antenna switches based on standard relays are also widely available. I bought and made up one of

these to use with my IC-7300. This used a positive voltage to switch the relay coil rather than the

more usual method of grounding the coil. Hence my first controller used six sets of BC817/BC807s

configured as high side switches. I developed the firmware using ideas from Nick Gammon, ON7EQ,

DM2RM, VE1ZAC and OK1CD and code I had developed for my Icom IC-7900 PTT distribution board.

When I got an Icom IC-705, I needed to control the filter bank in an HF linear amplifier I was building.

The IC-705 does not have a CI-V port but does provide CI-V data over Bluetooth. Compatible

Bluetooth serial data modules are readily available at low cost, so a new PCB was developed.

IC-705 Band outputs via HC05 Bluetooth module

I replaced the many discrete SMD transistors with a ULN2803A Darlington array which combines all

the transistors, resistors and protection diodes in an 18 pin DIP IC package. It uses low side switching,

but that’s fine for most relay switches and those that use high side can often be re-wired to work.

High Side Switch

Functional schematic of a ULN2803A switch cell

This worked well driving a 6-way SMA relay so I developed a second board, essentially the same but

without relay drivers to provide band data to my linear amplifier. Only Icom radios use the CI-V bus

and there are other radios in use with similar requirements to control antenna switches.

Bluetooth Switch and proof the box you chose will turn out to be too small

There are various options for these other radios. Many have RS232 or USB connectivity. The Yaesu FT-

817 and some other radios have a voltage output depending on the band and the Arduino has an

analogue to digital converter which can be used to detect that band.

FT-817 control via band voltage input

Other radios, including the Elecraft K3 provide band data as four TTL level signals on an accessory

port. The BATC Portsdown and Langstone projects also use this method. This allows the selection of

up to 16 bands, though these input methods only indicate the band, not the specific frequency or

mode in use.

Rather than having a different board for each of the band indication standards and applications, I

developed a more universal board and firmware. A header was added to allow an HC05 Bluetooth

module to be used with the Arduino’s built in serial port

I developed a test PCB with buttons and LEDs to indicate what the board was doing. The test board

functionality proved useful and has been integrated onto the main board.

Prototype 8-way multi-input controller

Firmware

The firmware is written in the Arduino IDE in C++ with configuration in a header file “definitions.h”. It

uses a two-button menu system. A short press on the left button changes to the next antenna relay

down and a press on the right button select the next antenna relay up. The selection is stored in

EEPROM so the switch will remember to it when that band next is selected, even after power cycling.

At power on, a long press of both buttons enters a configuration mode. The left button cycles

through menus, the right button selects. This allows setting the detection mode, the CI-V address, if

used, and several other options, including a reset to defaults.

The CI-V input expects 9600 baud. It is possible to set this higher, but much higher and the Arduino

may not be able to keep up. To avoid saturating the bus, the radio is polled once per second. That

means band changes are not instant. It should not interfere with logging software. The CI-V address

needs to be configured, the default is 94 Hexadecimal for the IC-7300. This can be changed and

stored in EEPROM via the Menu.

Design

I developed the PCB in KiCAD, it is free, easy to use and has a good 3D rendering capability that is

especially useful in visualising how parts fit. The PCB uses a mixture of through hole and surface

mount parts, with relatively large surface mount components that are widely spaced. There are test

LEDs and control buttons for setting up on the PCB. I used an Arduino Nano V3 in this design. The

newer Nano Every will also work but not the more recent 3.3V only Arduinos.

KiCAD 3D render and final PCB

The display is a standard 16x02 LCD with an I2C backpack. These greatly simplify connecting an LCD.

The backpacks have a configurable base address which need to be set in the header file, and is

typically 27 or 3F. Another I2C display type, e.g., 04x20 LCD or an OLED module could be used, with

appropriate changes to the software to drive it.

LCD Module and I2C backpack

The Bluetooth module is optional. RF engineers will know not to mount the project in a screened

metal box if using Bluetooth.

HC-05 Bluetooth module

The module uses the Nano’s serial interface which is also used for uploading the firmware. It is

necessary to remove the jumpers JP1 and JP2 when updating the firmware. Theoretically you could

program it via Bluetooth, or with appropriate changes to the code support other standards

The TTL band data option is based on the Elecraft standard, 0 = no band, 1 = 160m, 2 = 80m etc. This

table is also stored in the header file and can be adjusted as required. The pins are configured as

inputs without internal pull ups. They expect TTL levels, no more than 5V.

The voltage input option uses a jumper (JP3) to select either direct, up to 5V input, for the FT-817, or

a voltage divider for 8V for some Icom radios as the Arduino ADC is limited to 5V. With other radios it

will be necessary to modify the lookup table in the header file. The FT-817 has quite a high source

impedance, around 7k. Other radios may be similar, so pay attention to this when calibrating. As a

bonus, when using the CI-V or band voltage inputs, it is possible to configure the 4 band lines as TTL

level outputs for controlling other hardware. This functionality must be set up before flashing the

firmware. This is not a menu option as accidentally setting the Nano pins to outputs while they are

connected to a radio’s outputs could cause damage. As they use the same pins, band data input

option is not unavailable when using the band data output and vice versa.

The relay supply, input is also used to power the board using a LM7805 5V regulator. A header (J1)

carries the relay outputs. One side of each coil should be connected to the positive supply common

(COM) line. The other side connects to an ULN2803A output. When its input line is set to 5V, the

ULN2803A grounds the corresponding output, in our case switching the relay. There is no need for

diodes across the coils as these are included in the chip. J1 has a ground connection to facilitate

powering other equipment from the relay supply but be careful not to take more than an amp or so.

It would be wise to fit a fuse on the DC input if there is any risk of short circuits.

Schematic

Parts list and construction

None of the passives are especially critical. Pay attention to the voltage rating of the input capacitor

though and do not exceed 28V. I find it best to install parts by component height, starting with the

surface mount parts. The LM7805 needs a heatsink, especially if used above 12V. A drop-in switching

equivalent for example the RECOM R-785.0-0.5 could be used instead, but these usually cost more

and tend to generate RF noise. Pretty much any ferrite bead will do, something that has a few

hundred ohms impedance at the frequencies being used.

I prefer to use sockets for the modules. You can solder them in, but it is then very hard to remove

them later. I also socket the ULN2003A for easy replacement in case of accidents.

Reference Part Package Qty

C1, C2 1uF 50V Ceramic 1210 2

C3 – C9 1n Ceramic 0805 7

R1 – R8, R10, R13, R14 2k2 0805 11

R9, R12, R15 4k7 0805 3

R11, R16 10k 0805 2

D1 – D8 LED 3mm LED 8

D9 SM4001 SMA 1

D10 1N4148W SOD-123 1

U1 ULN2803A DIP-18 1

U2 L7805 TO-220 1

U3 Arduino Nano 1

U3 Headers 15 way pin socket 2.54mm spacing 2

SW1, SW2 Push Switch 6mm push switch, 2

FB1 – FB7 Ferrite Bead 1206 7

JP1, JP2 2 pin jumper 1x02 pinheader 2.54mm 2

JP3 3 pin jumper 1x03 pinheader 2.54mm 1

J1 10 way pin header Molex KK-254 1

J2, J6, J7 2 way pin header Molex KK-254 3

J3 4 way pin header Molex KK-254 1

J4 3 way pin header Molex KK-254 1

J5 5 way pin header Molex KK-254 1

J8 8 way pin socket 2.54mm spacing 1

BT Module HC05 Module 1

LCD Module Display 16x02 LCD with I2C backpack 1

